Pythagoras Theorem is used to solve problems related to the length of the sides of a triangle.
The formula to is
AB2+AC2=BC2
AB is the opposite side, AC is the adjacent and BC is the hypotenuse of a triangle ABC.
We shall create a JavaScript application to deal with problems related to Pythagoras Theorem. In this application, we shall insert two input boxes for the user to key in the length of the opposite side and the length of the adjacent side. The user can then click on the Calculate Hypotenuse button to find the answer.
The JavaScript is as follows:
function Calhypo(a,b){ var hypo=Math.sqrt(Math.pow(a,2)+Math.pow(b,2)); return hypo; } function Cal_hypo(){ var x=parseInt(document.getElementById("adjacent").innerHTML); var y=parseInt(document.getElementById("opposite").innerHTML); var z=Calhypo(x,y); var c=z.toFixed(2); document.getElementById('ans').textContent="The Length of hypotenuse is= "+c; }
We use the Math function pow(n,2) to find the square of a and b. The sqrt function is to find the square root of a number. We use the toFixed function to convert the resulting answer into 2 decimal places.
The HTML script is as follows:
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <title>Pythagoras Theorem</title> </head> <body onload="RandomFn()"> <h1>Pythagoras Theorem</h1> <p>Length of adjacent side a=<b id="adjacent"></b></p> <p>Length of opposite side b=<b id="opposite"></b></p> <P id="ans">The Length of hypotenuse c is</p> <input type="button" value="Calculate hypotenuse" onclick="Cal_hypo()"><br><br> <input type="button" value="Next Question" onclick=" location.reload();"> <script> function RandomFn() { document.getElementById("adjacent").innerHTML = parseInt(Math.random()*9+1); document.getElementById("opposite").innerHTML = parseInt(Math.random()*9+1); } </script> <script type="text/javascript" src="pythagoras1.js"></script> </body> </html>
Click on Pythagoras Theorem to view the output.